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)é Y Introduction to Film Cooling
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J-2X nozzle extension
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— J-2X analogue
— Various film flow cases:

Core Inlet:

« Case 0 —no film T30 K ) ML =24
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« Case 2 - My, =0.7 — Film Inlet:
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Jé‘ J-2x Nozzle film Cooling



A)j‘ Physics of Film Cooling
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) Important Flow Features
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!é‘ Regular vs Focused Schlieren Schematic
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The resulting image will be the average of all planes within depth of
focus. Will only be able to see turbulent structures with focused
schlieren



!;‘ Field of View

0 0

Regular

Imaging region
Core
Flow

Focused

Core
Flow

/ Imaging region
4= Film Flow I

 Focused Schlieren has a much smaller Field of view
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!é‘ Previous Work

« VanDercreek'!! was able to visualize a turbulent
boundary layer on a sharp nosed cone in a hypersonic
wind Tunnel

« Lawson!?l was able to measure velocity of supersonic
turbulent boundary layer using focusing-schlieren PIV
with a pulsed LED
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!é Y Objectives

* A non-Intrusive method to resolve velocity field and flow
structures
— Use regular schlieren to visualize shocks and expansions

— Used focused schlieren to visualize turbulent structures in the
boundary layer

— Use a pulsed LED for focused schlieren PIV
* Freeze flow to move only 0.1 mm
 Compare experimental velocity and flow structures to
CFD for validation
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Y UMD Supersonic Wind Tunnel

« Basic Specs
— Transient facility (6-10 sec run time)
— Working fluid: Air
— Total P, T: Ambient
— Test section Dimension: 12"x6"x26”

« The tunnel cannot directly match J-2X conditions so special care must be
taken to design analogous experiments.

— Heat walls to ensure that the heat flux vector always points into the flow
— Heat film to ensure temperature “cascade” is preserved
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. g“ Schlieren System

Horizontal Schlieren Stop
Top down view of tunnel
Main Flow Camera

Louver 1 ‘ ' ..........................
Mirror 1 \ T

f=59.75 in

\
vV
........................... 3 Mirrorz
.................. /
f="78.625 in e
LED

« Z configuration
* Nikon D-90 with Nikon 70-300mm 1/4-5.6G lens
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!é‘ Focused Schlieren Lengths

Frasnel lens
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« Everything was kept symmetric
— L=I'=1219 mm
— | =L" =240 mm. Determined by focal length of schlieren Lens
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)5‘ Cut-off grid Calculations
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5' Generating Source Grid

Fresnel lens
Cutoffgrid __.----73.
..a-l""" .-/“ 1
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====== | | Extended
\ T L source
Lf
I >

System is symmetric. So able to
run system in reverse in order to
determine size of source grid

Both cut-off and source grid
printed on transparency paper




B e e —
)g Focused Schlieren System

Fresnel Lens and Schlieren Lens and
Source Grid cut-off grid
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Expected Focused Schlieren Images
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Pulsed Light Source

VS
C1 =1pF poly.
C2 = 2200pF elec. B SOLDERLESS
D1 =BYT01-400 [T]R1 ‘MBREADBOAHD‘
LD1 = LED e
R1 ~1.20Q C
R2 =002Q et ez A - P g b
T1 = IRFB3206GPbF i i
U1 =UCC37322P | i: [adsd seo
V.. ¢ LD1 T g
D1 ¥ x A oo sunen §il
I *§ .:: e : SRR e Vi
- - i H ‘

T U1 |

Based on a high intensity LED with an advertised response
time < 25ns

Based on Wilert's design!3! which used a pulse width of 5us

Circuit triggered using a square wave generated by an
Arduino
— Arduino provides inexpensive triggering flexibility
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e Results and Conclusion
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!é‘ Flow Structure: Case 0 (Mg, = 0)
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!é‘ Flow Structure: Case 1 (M, = 0.5)

Flow »

Film Louver

/ Shock
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!é‘ Flow Structure: Case 2 (M, = 0.7)

Flow »

Film Louver

Shock
Boundgy layers
) Shear layer
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wall
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!é‘ Flow Structure: Case 3 (Mg, = 1.2)

Flow »
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‘4)5‘ Schlieren Image of full test section: No Film

10 20 30 40 60 70
x/s | | I | 1 2P | 1

* Shear layer appears completely mixed out after x/s = 8
* Lip shock reflects off upper wall at x/s = 22.5
* Numerous blotches are window scratches
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)5‘ Automated Angle Detection

« Able to detect lines in an image using the Hough
transform matlab functions

Case 0 (Mg, =0)
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1 Comparison to CFD

« Schlieren and CFD are qualitatively similar
— Both show lip and reattachment shocks
— Evidence of recirculation region

« Shock angles consistent within 5%
— Lip shock 8 = 30°
— Reattachment shock 8 = 21°
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Jé‘ Depth of Focus

10 mm
out of focus

* Targetis an 8-32 bolt

* Depth of Sharp focus is on the order of 10 mm
*  Much smaller than tunnel width (152 mm)
* Insufficient to resolve small scale structures
* But much better than regular schlieren

In focus
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| ,; Y Focused Schlieren Sensitivity

* Focused schlieren video
of butane gas stream in
the test section

No Film Case Focused Schlieren
Minimum verifiable density gradient
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!5 Power/Pulse Width Tradeoff

Mormalized Intensity vs pulse Width
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=
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 The 70 us pulse provided enough power to illuminate the
test section
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? Amplifier = Transistor

pat e Tigd - ED
Coupling ' ' e " L
& Impedance Sy ; . s
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“TMT.004s°A Ch1 JG0omV: 5 . : , : :
I §473.26400us ; . N “T'M4.00us A

.....

++/26.9400

- Yellow is the output of the amplifier (the gate input of
the transistor) and green is the output of the transistor

- 1ps scale on left and 4us scale on right

- Delayed response of transistor seems to be related to
delayed rise to peak voltage in the amplifier (amplifier
might need to be replaced)



Now 4o

! Y Pulsed Light Source

Pulse Duration vs. Spatial Resolution
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25‘ Conclusions

e Status of current system :
— Insufficient sensitivity to resolve turbulent density fluctuations
— Insufficient depth of sharp focus to resolve turbulent structures
— Insufficient temporal response to freeze flow

Sensitivity: 0.88 26 5
Density

Gradient (%)

Depth of 1 10 1
Sharp Focus

(mm)

LED Pulse 5 70 0.1
Width (us)
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25- Next Steps

 Regular Schlieren
— Obtain more downstream images

« Main problem with focused schlieren system is rigidity
— Focused schlieren very difficult to align precisely
— Will provide better frame for Fresnel lens and source grid
« LED power supply
— Some components don’t seem to behave as advertised
— Will test with new components
— Looking into alternative circuits
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